Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.

نویسندگان

  • Ajit Srivastava
  • Han Htoon
  • Victor I Klimov
  • Junichiro Kono
چکیده

We report the direct observation of spin-singlet dark excitons in individual single-walled carbon nanotubes through low-temperature micro-magneto-photoluminescence spectroscopy. A magnetic field (B) applied along the tube axis brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing B at the expense of the originally dominated bright exciton peak and became dominant at B>3 T. This behavior, universally observed for more than 50 tubes of different chiralities, can be quantitatively modeled by incorporating the Aharonov-Bohm effect and intervalley Coulomb mixing. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 nm. Scatter in the splitting value emphasizes the role of the local environment surrounding a nanotube in determining its excitonic fine structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron-Hole Asymmetry in Single-Walled Carbon Nanotubes Probed by Direct Observation of Transverse Quasi-Dark Excitons

We studied the asymmetry between valence and conduction bands in single-walled carbon nanotubes (SWNTs) through the direct observation of spin-singlet transverse dark excitons using polarized photoluminescence excitation spectroscopy. The intrinsic electron-hole (e-h) asymmetry lifts the degeneracy of the transverse exciton wavefunctions at two equivalent K and K' valleys in momentum space, whi...

متن کامل

Direct observation of dark excitons in micelle-wrapped single-wall carbon nanotubes.

We have performed electroabsorption spectroscopy on micelle-wrapped single-wall carbon nanotubes. In semiconducting nanotubes, many oscillating structures composed of the increase and decrease of absorption are observed in the spectra in the region of the first and second absorption bands, E11 and E22. The spectral shape is reproduced mainly by the second-derivative curve of the absorption spec...

متن کامل

Final Report : Spectroscopy of Many - Body Effects in Carbon Nanotubes Report

The goal of this research project was to explore the fundamental properties of degenerate one-dimensional (1-D) electrons in single-walled carbon nanotubes (SWNTs) using dynamical methods to probe and understand electronic correlations and many-body phenomena. We studied two aspects of 1-D electron correlations in SWNTs: Fermi-edge singularities (FES) and conduction electron spin resonance (ESR...

متن کامل

Micro-Photoluminescence Spectroscopy of Excitons in Individual Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWNTs) are fascinating materials to study onedimensional photophysics. Their optical properties are strongly affected by strong Coulomb interactions and are determined by ”excitons” which represent the quantum of polarization in non-metallic solids. In this thesis dissertation we have experimentally investigated both the structure and the dynamics of excitons in ...

متن کامل

Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes

The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 8  شماره 

صفحات  -

تاریخ انتشار 2008